Communications to the editor

TOTAL SYNTHESIS OF *RAC*. NEGAMYCIN AND OF NEGAMYCIN ANALOGS

Sir:

Negamycin, an antibiotic produced by *Streptomyces purpeofuscus*, inhibits bacterial growth and is especially interesting by virtue of its action on Gram-negative bacteria including *Pseudomonas* and multiple-drug-resistant enteric bacteria¹). It has been shown to inhibit protein synthesis and to cause miscoding²⁻⁷). Negamycin has a unique structure⁸), [2-{(3R,5R)-3,6-diamino-5-hydroxyhexanoyl}-1-methylhydrazino] acetic acid, which has been confirmed by total synthesis starting from a sugar derivative⁹).

The antipode of negamycin, also synthesised from a carbohydrate precursor⁹⁾, retained definite antibacterial activity, although much less than that of natural negamycin. Leucylnegamycin¹⁰⁾, a precursor in the biosynthesis of negamycin, showed 42% of the activity of the latter against *Escherichia coli* K12. Recently, H. UMEZAWA and coworkers¹¹⁾ isolated 3-epi-deoxynegamycin and leucyl-3-epi-deoxynegamycin from *Streptomyces goshikiensis* and synthesised two leucylisomers, all of which compounds had markedly reduced antibacterial activity compared to negamycin.

3-Azaanalogs of negamycin, which we have described in a previous paper¹²⁾, were inactive against bacteria. Recently H. UMEZAWA and coworkers¹⁸⁾ reported the synthesis of several negamycin analogs modified in the δ -hydroxy- β lysine moiety. Of these derivatives, only Omethylnegamycin, deoxynegamycin, and, to a lesser extent, 3-epi-deoxynegamycin had antibacterial activity, and all to a lesser degree than negamycin. In general, there was a good correlation between antimicrobial activities of negamycin analogs and their activities in cell-free systems¹⁴). In the present communication we describe a new total synthesis of rac. negamycin, its diastereomeric analog and of several negamycin analogs, mostly modified in the hydrazinoacetic acid part.

Two key intermediates, 4 and 7, were prepared from the known¹⁵⁾ (2RS, 6RS) 5,6-dihydro-2ethoxy-6-hydroxymethyl-2H-pyran (1). Mesylation of 1 yielded (2RS, 6RS)-5,6-dihydro-2ethoxy-6-methanesulfonyloxymethyl-2H-pyran (2) in quantitative yield. Addition of carbamic acid benzyl ester catalysed by BF3-etherate in dichloromethane at 0°C proceeded regio- and stereospecifically. The product thus obtained was converted directly to azide 3 by reaction with sodium azide in hexamethyl phosphoric triamide (HMPTA) followed by chromatographic purification on silica gel, using chloroform as the eluant, in 78% overall yield. Structure and stereochemistry of 3 as (2RS, 4SR, 6RS)-6-azidomethyl-4-benzyloxycarbonylamino-2-ethoxytetrahydropyran was easily confirmed by comparison of its NMR-spectrum with the spectra of known¹⁶) stereoisomeric 6-acetoxymethyl-2,4diacetoxytetrahydropyranes. Coupling constants of the protons at C-2, C-4, and C-6 showed that the substituents at C-2 and C-4 occupy axial positions, whereas the substituent at C-6 occupies an equatorial position. Mild hydrolysis of 3 with 50% aqueous acetic acid at 100°C for 1 hour and subsequent oxidation with Jones reagent in acetone gave lactone 4 as a crystalline solid, mp. 102~105°C, in 67% yield.

Mild, acidic acetal cleavage of 2 (10% acetic acid at 20°C) and subsequent oxidation with Jones reagent gave crystalline 5,6-dihydro-6methanesulfonyloxymethyl-2-oxo-2H-pyran (5), mp. 40~42°C, in 55% yield. MICHAEL addition of O-benzylhydroxylamine to 5 in ethanol at room temperature yielded crystalline (4RS, 6SR)-4-benzyloxyamino-6-methanesulfonyloxymethyl-2-oxo-2*H*-pyran (6), mp. $92 \sim 95^{\circ}$ C (67% yield), which was converted to azide 7 (100%) by reaction with sodium azide in HMPTA. With regard to the relative configuration of the new asymmetric centres in 6 and 7, NMR spectra did not permit an unambiguous assignment to be made. Catalytic hydrogenation of 4 and subsequent acetylation yielded (3RS,5SR)-3-acetamido-5acetoxy-6-aminohexanoic acid ε-lactam (8), the structure of which was determined by IR-, NMRand mass spectra. Reduction and acetylation of 7 in the same manner yielded a product which

was identical with the one obtained from 4, thus proving that the tetrahydropyranes, 4 and 7, have the same stereochemistry.

THE JOURNAL OF ANTIBIOTICS

Treatment of lactones 4 and 7 with various amines, hydrazines, aminoacid benzyl esters and hydrazino acid benzyl esters in toluene under reflux gave amides and hydrazides 9 and 10 $(10 \sim 45\% \text{ yield})$. Removal of protecting groups and conversion of azido- and hydroxylaminogroups into amino groups was carried out in one step by catalytic hydrogenation over palladium

NHZ

$$R_1CH_2$$
 OC_2H_5
 N_3CH_2
 OC_2H_5
 N_3CH_2
 OC_2H_5
 N_3CH_2
 OC_2H_5
 N_3CCH_2
 OC_2H_5
 $OC_$

NH₂

 black in a mixture of methanol, acetic acid and water to yield the negamycin analogs, $11a \sim 11i$, with the 3RS,5SR-configuration of the hexanoyl part. These compounds were purified by column chromatography on Amberlite CG-50 (NH₄+) resin, using water and 0.5% aqueous ammonia as the eluant.

To obtain rac. negamycin and negamycin analogs with the 3RS,5RS-configuration of the hexanoyl moiety, the intermediates $9a \sim 9g$ were converted to their diastereomers by mesylation of the hydroxyl group to 12a~12g, and inversion of the configuration at C-5 by treatment with sodium acetate in moist dimethylsulfoxide. Compounds 13 obtained by this procedure gave NMR-spectra very similar to those of 9 but showed slightly different Rf-values on silica gel with chloroformethanol-mixtures of various compositions. Catalytic hydrogenation of $13a \sim 13g$, and purification on ion-exchange resin yielded rac. negamycin (14a) (10% overall yield from 4) and negamycin analogs with the 3RS,5RS-configuration (14b~ 14g).

Table 1. Properties of negamycin analogs

Compound	Rf on TLCa)	Activity (%)b)
Negamycin	0.10	100
11a	0.12	25
11b	0.18	< 6.25
11c	0.16	< 6.25
11d	0.52	6.25
11e	0.56	12.5
11f	0.11	< 6.25
11g	0.38	< 6.25
11h	0.64	< 6.25
11i	0.15	< 6.25
14a	0.10	50
14b	0.15	< 6.25
14c	0.12	6.25
14d	0.49	< 6.25
14e	0.50	< 6.25
14f	0.10	< 6.25
14g	0.29	< 6.25
16	0.37	< 6.25

a) Thin-layer chromatography on silica gel G (Merck) developed with chloroform - methanol
 - 25% aqueous ammonia (2:2:1).

b) Activities were compared with negamycin (100%) by the method described in Table 2 by using *Staphylococcus aureus* at pH 8.5.

	SFI- code	Minimum inhibitory concentrations (mcg/ml)*					
Test organisms		Negamycin		14a		11a	
		pH 7.0	pH 8.5	pH 7.0	pH 8.5	pH 7.0	pH 8.5
Staphylococcus aureus FDA 209 P	△ 54	10	6.25	25	12.5	75	25
Escherichia coli K12	△ 127	25	2.5	25	6.25	> 200	75
Escherichia coli K12	△ 169	10	3.12	50	9.37	> 200	75
Escherichia coli K12	△ 230	6.25	1.25	18.75	4.68	150	25
Proteus vulgaris ATCC 13315	△ 116	10	2.5	12.5	3.12	> 200	75
Pseudomonas aeruginosa NCIB 950	△ 92	25	10	75	18.75	> 200	150
Klebsiella pneumoniae ATCC 10031	△ 217	10	0.78	18.75	2.34	150	12.5
Salmonella typhimurium ATCC 13311	△ 109	10	2.5	37.5	9.37	200	50

Table 2. Antimicrobial spectra of negamycin, rac. negamycin (14a) and rac. epi-negamycin (11a)

Reaction of mesylate **12a** with sodium azide in HMPTA gave the 5-azido compound (**15**) (probably with inversion of configuration at C-5 to the 3RS,5RS-compound). Catalytic hydrogenation followed by ion-exchange chromatography yielded *rac*. 5-amino-5-deoxynegamycin (**16**).

Properties of negamycin analogs are summarized in Table 1. Among these negamycin analogs, only 11a, the diastereomeric analog of negamycin, possessed weak antibacterial activity, amounting to ca. $5 \sim 10\%$ of that of negamycin, while all other derivatives were inactive. Rac. negamycin, as expected, displayed ca. 50% of the activity of an authentic sample of negamycin (Table 2).

These results indicate that the (1-methylhydrazino)acetic acid part of the negamycin molecule is essential for antibacterial activity. Furthermore, it is noteworthy that the hydroxyl group in C-5 may not be replaced by an amino group (as in 16) without loss of antibacterial activity.

WOLFGANG STREICHER HELLMUTH REINSHAGEN FRIEDERIKE TURNOWSKY

Sandoz Research Institute, Brunnerstraße 59, A-1235 Vienna, Austria

(Received April 17, 1978)

References

 HAMADA, M.; T. TAKEUCHI, S. KONDO, Y. IKEDA, H. NAGANAWA, K. MAEDA, Y. OKAMI & H. UMEZAWA: A new antibiotic, negamycin. J. Antibiotics 23: 170~171, 1970

- MIZUNO, S.; K. NITTA & H. UMEZAWA: Mechanism of action of negamycin in *Escherichia coli* K12. I. Inhibition of initiation of protein synthesis. J. Antibiotics 23: 581~588, 1970
- MIZUNO, S.; K. NITTA & H. UMEZAWA: Mechanism of action of negamycin in *Escherichia coli* K12. II. Miscoding activity in polypeptide synthesis directed by synthetic polynucleotide. J. Antibiotics 23: 589 ~ 594, 1970
- UEHARA, Y.; S. KONDO, H. UMEZAWA, K. SUZUKAKE & M. HORI: Negamycin, a miscoding antibiotic with a unique structure. J. Antibiotics 25: 685~688, 1972
- UEHARA, Y.; M. HORI & H. UMEZAWA: Negamycin inhibits termination of protein synthesis directed by phage f2 RNA in vitro. Biochim. Biophys. Acta 374: 82~95, 1974
- UEHARA, Y.; M. HORI & H. UMEZAWA: Specific inhibition of the termination process of protein synthesis by negamycin. Biochim. Biophys. Acta 442: 251 ~ 262, 1976
- UEHARA, Y.; M. HORI & H. UMEZAWA: Inhibitory effect of negamycin on polysomal ribosomes of *Escherichia coli*. Biochim. Biophys. Acta 447: 406~412, 1976
- Kondo, S.; S. Shibahara, S. Takahashi, K. Maeda, H. Umezawa & M. Ohno: Negamycin, a novel hydrazide antibiotic. J. Am. Chem. Soc. 93: 6305~6306, 1971
- SHIBAHARA, S.; S. KONDO, K. MAEDA, H. UMEZAWA & M. OHNO: The total syntheses of negamycin and the antipode. J. Am. Chem. Soc. 94: 4353~4354, 1972
- 10) Kondo, S.; H. Yamamoto, K. Maeda & H. Umezawa: Leucylnegamycin, an antibiotic from negamycin-producing *Streptomyces*. J. Antibiotics 24: 732~734, 1971

^{*} Minimum inhibitory concentrations were determined in 0.5% peptone water (Polypeptone BBL) by incubation at 37°C for 16 hours.

- 11) Kondo, S.; K. Yoshida, T. Ikeda, K. Iinuma, Y. Honma, M. Hamada & H. Umezawa: 3epi-Deoxynegamycin and leucyl-3-epi-deoxynegamycin produced by Streptomyces. J. Antibiotics 30: 1137~1139, 1977
- 12) STREICHER, W. & H. REINSHAGEN: Synthese eines Azaanalogen des Antibiotikums Negamycin. Chem. Ber. 108: 813 ~ 819, 1975
- 13) Kondo, S.; K. Iinuma, K. Yoshida, K. Yokose, Y. Ikeda, M. Shimazaki & H. Umezawa: Syntheses and properties of negamycin analogs modified the δ-hydroxy-β-lysine moiety. J. Antibiotics 29: 208~211, 1976
- 14) UEHARA, Y.; M. HORI, S. KONDO, M. HAMADA & H. UMEZAWA: Structure-activity relationships among negamycin analogs. J. Antibiotics

- 29: 937~943, 1976
- Jurczak, J.; A. Konowal & A. Zamojski: Derivatives of 2-alkoxy-5,6-dihydro-α-pyran as substrates in the synthesis of monosaccharides.
 III. 2-Alkoxy-6-hydroxymethyl-5,6-dihydro-α-pyrans and 2-alkoxy-6-hydroxymethyltetrahydropyrans. Roczniki Chemii Ann. Soc. Chim. Polonorum 44: 1587~1590, 1970
- 16) Chmielewski, M.; J. Jurczak & A. Zamojski: Derivatives of 2-alkoxy-5,6-dihydro-α-pyran as substrates in the synthesis of monosaccharides. X. Stereochemistry of addition of acetic acid to 6-acetoxymethyl-2-methoxy-5,6-dihydro-αpyran. Roczniki Chemii Ann. Soc. Chim. Polonorum 46: 627 ~ 631, 1972